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Abstract

Our goal was to determine whether expert swing dancers physically optimize their
pose for a partnered spin. In a partnered spin, two dancers connect hands and spin
around a single vertical axis. We describe the pose of a couple by the angles of their
joints in a two-dimensional plane. These angles were outputs of an optimization model
that gave the ideal pose for a couple. A biomechanical model built in Mathematica
allowed comparisons to live dancers with the use of a motion capture system.

The optimization objective is to maximize angular acceleration, by minimizing
the resistance to spin, but still producing torque. The model considers only external
forces and neglects internal forces. It consists of equations derived from physical
principles such as Newton’s laws and moment of inertia calculations that govern how
people move. Using numerical non-linear optimization we found the pose for each
couple that maximizes their angular acceleration. Different dancers are differently
sized, so every couple has a different optimal pose. Each couple’s optimal pose was
compared to the pose they actually assumed for the spin.

Our motion capture system consisted of four video cameras, reflective balls that
could be tracked, and software to integrate the different angles of the cameras. The
captured data consisted of the three-dimensional location of each of the marked body
joints. We used this data to determine the angles of the joints to calculate the cou-
ple’s actual pose. The couple’s actual pose was used to calculate a predicted angular
acceleration. This predicted acceleration was then compared to the optimal accel-
eration to determine a fraction of optimal for each couple. We hypothesized that
expert swing dancers would achieve a higher fraction of their optimal acceleration
than beginners. While difference between expert and beginners was not significant
our results for optimal poses were intuitively logical.

Keywords: nonlinear optimization, biomechanics, motion capture
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Chapter 1

Why swing dance and physics?

1.1 The Rhythm Circle

This work began with a question of whether expert lindy hop swing dancers use
physics to perform a rhythm circle in the most optimal way. To answer this ques-
tion, we built a mathematical model to represent the pose dancers would choose to
maximize his or her ability to spin quickly.

Lindy Hop is a fast paced style of dancing that originated in the 1920s and is now
danced recreationally and competitively. Swing dance is an American folk partner
dance form that originated in the Harlem of the 1920’s and 1930’s. Today this dance
has developed into quite an athletic endeavor. Lindy Hop is danced to very fast
music and can involve aerial tricks in addition to fancy footwork. To reach a level
of competitive expertise, advanced dancers often train intensely for five to ten years
before reaching the top levels of competition.

A rhythm circle is a movement where a couple spins as a unit around a single
vertical axis. A good rhythm circle would look smooth, but also involve the dancers
rotating fast. When discussing this movement, dancers often talk about minimizing
moment of inertia or the need to create torque to spin, however, no one has actually
studied this movement and determined quantitatively if they do what they claim in
their discussions of physics. While no one has undertaken a study of swing dance
in this style, extensive work has been done with motion capture and sports. A
description of relevant articles related to this work is provided in Chapter 2. Figure
1.1 shows a couple in the midst of a Lindy move.



Figure 1.1: Swing dancing is enjoyed recreationally by millions of people around the
country.

1.2 What to optimize?

The goal of this work is to determine if dancers optimize a physical objective when
performing a partnered spin. We created a notation system of letter variables and
a series of equations that model the dancers’ pose. The notation system is fully ex-
plained in Chapter 3. With this notation, we developed a few candidate mathematical
objectives for describing the best pose.

The actual value of the objective will vary for each couple because it will be
determined by their individual sizes. We considered moment of inertia, angular ac-
celeration, and angular velocity all as possible objectives that better dancers might
minimize or maximize. Minimizing the moment of inertia was the simplest objec-
tive function that we considered. We did extensive work with this objective by first
defining all the distances to the axis of rotation in terms of joint angles and body
measurements in Chapter 3 and then calculating moments of inertia as described in
Chapter 5. We added constraints, described in Chapter 4, to account for the realities
of the human body that did not allow the person to enter a position that would be
physically impossible.

Inertia was ultimately rejected as an objective function because it yields a simple
answer that we know does not describe the correct pose. Since our performance metric



is having the dancers spin as fast as possible without tripping or falling over; the ideal
objective would be to maximize angular velocity. However, we determined this value
would be too difficult to model based on parameters we could measure. Instead, we
maximized the angular acceleration. This value was easier to calculate, and because
angular acceleration is what allows the couples to reach their max speeds it still has
a correlation to maximizing speed. Finally, this value takes into account the need to
produce force from the feet along with the need to minimize moment of inertia, which
we already calculated.

We created a model to calculate the torques the dancers create to propel them-
selves in a circle, along with their moments of inertia. Determining the torques
involved was a challenge. Instead of directly calculating torque, we used a surrogate
method for estimating the external forces acting on the dancer. Our method for
calculating torque is explained in Chapter 6.

1.3 Simplifying Assumptions

We made a number of simplifying assumptions in our analysis. First, we neglected
internal forces that the person might generate in a chosen pose. This assumption made
it easier to solve the problem, as we have no method for measuring the internal forces
exerted by the dancers. The methods for determining internal forces are extremely
complex and beyond the scope of this research [4].

The true spinning motion that dancers create when performing a rhythm circle
is very complex because the velocity is constantly varying with the interactions of
friction and the foot pushing to create acceleration. We assumed that dancers’ poses
were fixed and did not change over the course of the spin, even though in reality
the dancers do change their position, for example as they take steps. While we
acknowledge that the feet moving changes the pose, we observed that the overall pose
of the dancers remains relatively stable.

Another simplification we made concerned the connection between the two dancers.
In reality the dancers have multiple points of connection: leader’s right hand around
follower’s left shoulder blade, follower’s left hand on leader’s right shoulder, the cou-
ple’s arms touching, and leader’s left hand holding the follower’s right hand. To focus
on the spinning motion, we summed these forces and considered them as if they acted
at a single connecting point located between the couple.

In fact, the dancers accelerate by pushing off the floor and slow down when they
are not pushing due to friction. This interplay eventually reaches an equilibrium
where rotational velocity is relatively constant. We did not consider these two phases



of the spin in our model. Instead we focused on maximizing angular acceleration. If
a couple accelerates faster they will reach a higher rotational velocity than a couple
with lower angular acceleration.

1.4 The Optimization scheme

We used a numerical optimization scheme to find a pose that maximized angular
acceleration for each couple. The problem is nonlinear because of the presence of
trigonometric functions relating the joint angles, which determine the pose, to the ob-
jective function. In order to track our equations and perform numerical optimization
we used Mathematica. Mathematica has an “NMaximize” function that implements
a global non-linear optimization scheme. The optimization problem was particularly
challenging because not only was it non-linear, but it was very high dimensional. Our
decision variables were the 14 angles that defined the couple’s pose. The objective was
to minimize our function estimating moment of inertia, or to maximize our function
estimating rotational acceleration, see Chapter 6.

1.5 Dancing to Verify

We used a motion capture system to record live dancers performing the rhythm circle.
The MaxTraq 3d motion capture system by Innovision Systems is made up of four
video cameras and nineteen reflective markers that are placed on each dancer. A full
description of this system is presented in Chapter 8. The system records the X-Y-Z
location of each of the points 32 times a second. Using this data we determined
dancers’ actual joint angles for their chosen pose.

In order to determine how close each couple was to their calculated optimum posi-
tion, we had to create a metric for comparison. The metric used the joint angles from
the actual pose the dancers held, and input the values into the model to determine an
achieved angular acceleration. To determine each couple’s fraction of their optimal
acceleration, we calculated the ratio of their achieved acceleration to their optimal
acceleration. These fractions were then compared using a Mann-Whitney statistical
test. Chapter 9 describes our process for data analysis. We hypothesized that expe-
rienced dancers would find a pose closer to their optimum than novice dancers, and
thus reach a statistically significant higher fraction of their theoretically achievable
acceleration.



Chapter 2

What’s been done: Previous work
in human motion and optimization

2.1 Studies in Motion and Biomechanics

2.1.1 Dogs Optimization

Obviously dogs do not study calculus to learn to calculate derivatives or solve equa-
tions. However, Pennings demonstrated that even without doing calculations the dogs
chose a near optimal path for when to stop running and jump in the water and swim
in order to minimize the time required to reach a ball floating in the waters of Lake
Michigan [9]. This article is relevant because it demonstrates an example in which
animals with no knowledge of calculus acted in an optimal way. We are attempting
to determine if dancers, many with a minimal knowledge of math and physics, still
use these principles naturally in attempting to spin as fast as possible.

2.2 Human Motion Study

2.2.1 In Competitive Sports

Many studies on competitive athletes show that particular human movements seem
to be optimal according to some objective. For example, Raasch et al. found good
agreement between an optimal control model of maximum speed bicycle pedaling and
actual human pedaling strategy [2]. In this study researchers showed that athletes



maximized the power produced in a pedal stroke by pushing on the down stroke and
pulling on the up stroke.

In another study of optimized human motion, Yeadon [14] looked at the optimized
performance of a straight arm backward longswing on the still rings in mens artistic
gymnastics. Because gymnasts lose points for excessive swing at the beginning or
conclusion of the swing, Laws attempted to minimize swing through realistic changes
in technique. They began with an actual performance, and then allowed variance
from that performance in their model as it searched for the optimal positions. One
distinction is that they began with an actual performance and used that as the basis
for their search. Yeadon determined that with timing within 15ms, gymnasts can
minimize their excess swing down to two degrees.

2.2.2 In Dance

Kenneth Laws has shown that the quality of the jumps, spins, and lifts individual
dancers perform is dependent on how well the dancers exploit their own physical
characteristics along with using the laws of physics [6]. In one study he examined
different aspects of momentum transfer within dance [5]. His work included the use of
the arms to increase the height of a jump and the use of the “windup” leg in correctly
performing pirouette and fouette turns. These studies and other like them imply that
human beings unconsciously use physical and mathematical principles when they
execute complicated movements. While extensive studies have been conducted on
single person optimal motion, partnered motion has rarely been addressed because of
the complexity of dealing with two people coordinating their actions.

2.3 Coordination in Partnered Motion

When two people accomplish a task together, such as dancing, they work together
and much of their communication is nonverbal and channeled through their physical
contact. For example, a male dancer leads his partner by increasing or letting off
pressure on the females shoulder blade to communicate his intent to move her back-
ward or forward. The vast majority of their communication is non-verbal. According
to Gentry [3] expert swing dancers have a common vocabulary of movements from
which they choose and then the leader communicates his choice to the follower who
then receives the signals and then performs the movement. In this way they dance
together.

When two individuals perform a task together, their need to coordinate creates an



extra complication, so one cannot automatically predict whether they will be more
efficient together than an individual working alone. This principle was demonstrated
by Kyle Reed when he had individuals perform a task and then had them perform the
same task together. A clear correlation between the effectiveness of the individuals
vise the effectiveness of the two people working together did not exist.

We will work with movements in which the coordination problem can be largely
ignored without significantly affecting the results. The problem of understanding the
physical principles of multiple human motions is sufficiently different from the single
person case without considering coordination and will contribute to the current body
of knowledge.

2.4 Animation and Optimization

Finally, our work may relate to computer animation. Using the insight that human
beings often move unconsciously in optimal patterns, programmers are able to de-
velop simpler algorithms to represent the motions. Safonova et al. used optimization
to animate a character in lower dimensional space [12]. Because they were able to
represent the character’s in lower dimensional space, the animation was much smaller
in size and required significantly less computer time to render. Because of the de-
creased dimensionality of the space, the character’s motions were simplified but they
still resembled the actual human movements. This observation supports the predic-
tion that human beings move in an optimal, logical pattern. Our work deals with
simplified poses, but as [12] shows simplification can be done and still allow realistic
modeling of the movements when people are moving in an optimal way.

2.5 Body Modeling

2.5.1 Building the Body

In his study involving gymnasts on the rings, Yeadon developed a body model com-
posed of truncated cones and cylinders [14]. The trunk of the person is treated as
two connected stadiums, truncated cones, and the arms and legs are modeled with
cylinders. His model has since been used extensively because it represents the body
with a relatively high degree of accuracy, but still provides for regular shapes that
can be used in mathematical modeling. Other researchers have elaborated on how to
calculate parameters for the Yeadon body model [8]. To simplify the calculations we



developed our model using only cylinders.

While he did not build a unique model like Yeadon, Hatze attempted to synthesize
the work done on body modeling into a single paper [4]. His work showed that to
build an effective model one must consider the purpose of the model to determine the
amount of detail that is necessary. If one wants to model a piano player, one would
build a model with more degrees of freedom and detail in the hands. Conversely, in
our model we do not put any detail into the hands because we are interested in major
joint angles of the body pose.

Hatze also looked at attempts to model the interior dynamic muscle contractions.
He claimed that attempts to model the muscle contractions were generally lacking
because they were not able to account for enough of the major variables. In our model
we ignored the internal muscular forces.

2.5.2 Center of Mass and Force Calculations

Our understanding of how people could be treated as rigid bodies with definite forces
acting through their center of mass came from Tozeren [13]. One of his examples
calculates the location of the center of mass of a complex body by breaking it into
parts and computing a weighted average of the center of mass of each of the body
parts.

Tozeren’s book also explained concepts such as the moment of inertia of an object
and how to use vectors to define how a force was acting on an object. Interestingly,
all of Tozeren’s examples were of individual movements, not partnered movements.
His text did, however, provide valuable insight into the physics of the human body.

2.5.3 Weight Distribution

To determine the distribution of the dancers’ weight throughout the different parts of
their body we relied on a study by Nikolova and Toshev on the Bulgarian population
[7]. In their study they calculated the average size, weight distribution, center of
mass, and moments of inertia of Bulgarians. Their system for segmenting the body
was very similar to our method, so we used the results to partition each dancer’s
weight among body segments. Dancer’s total weight was self-reported.



2.5.4 Biomechanics and Robotics

The study of biomechanics, including moments of inertia and their effects on human
motion was first developed in the 1940s to improve the unsatisfactory prosthetic de-
vices available to amputees. Biomechanics is the application of engineering principles
to animal and human movement problems. Current applications of human motion
analysis include developing robots with human-like characteristics. QRIO, a robot
developed by Sony, is able to recover from being pushed backward. In order to pro-
gram QRIO to react properly, the developers studied how humans react to regain a
balanced center of mass. Conversely, the robot must be programmed to put itself off
balance at times in order to take a step forward. If it were to remain in a balanced
position all the time, it would not move anywhere. This insight was gained through
studies of people walking.

Similarly we will study how people move interactively, which may provide insights
to programmers attempting to design robots to work together or in tandem with
humans. In a call for papers published this past year, the Naval Research Office
offered more support to people working on the problem of collaborative motion [1].
The long-term developments of this work might include battlefield robots that can
act as medics working together to transport wounded soldiers.



Chapter 3

Jointed Body Model Development

3.1 The Stick: the Simplest Model

Our simplest mathematical model for the rhythm circle represents the dancers as
two single thin rods. As you can see in Figure 3.1, the body is represented by lines
whose length is the height of the person, and the pose is determined by angle of
the body measured from the horizon. In this model the length of the arms is fixed.
The only other parameter is the height of the dancer. Additionally, the only decision
variable is the angle of the dancers’ body with the ground. While this model did
not present a very detailed picture of the pose, it provided a basis from which to
build our understanding of the problem. The challenge presented by this model was
how to calculate the moment of inertia of a tilted thin rod. This calculation involved
defining the moment of inertia with an equation to represent the varying distance to
the axis of rotation along the length of the body. The calculations for the moment of
inertia of a single thin rod, explained in Chapter 5, were simpler than for a jointed
3-dimensional representation.

3.2 The Stick with a Hip

In addition to the components present in the original model, the bend at the hip
was added as a decision variable. The angle at the hip was still modeled as the
angle from the horizon to the torso on the side of the hip closest to the axis of
rotation. This model is illustrated in Figure 3.2. Because even a bent stick is not a
realistic depiction of a human body, and not very interesting as a model because of

10
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Figure 3.1: The most basic model we considered with the dancers represented as rigid
rods. R is the range to the shoulder from the axis of rotation, L;qgc is the height of
the person and 6 is the angle at which the dancers are standing.

Rs

o

Figure 3.2: Stick Figures with a hip joint. The abbreviations are the same as 3.1
with the addition of a hip angle, 6;, and the splitting of the body into two sections
representing the torso and the legs.
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mLt

mLc mlc | fc fic

Figure 3.3: Developed model with each of the lengths notated.

its simplicity, we advanced the model so that it included seven angles for each person
and separate parameters for each of their body parts. While the full model is not a
perfect representation of the freedom of movements available, it should have enough
detail to produce interesting information about dancer pose selection.

3.3 Full Model Notation

Figure 3.3 shows the stick diagram with lengths labeled. The f and m represent
whether the dancer is the leader or follower, while the L denotes that the value is the
length of a body part. The final letter in each of the variables denotes which specific
part of the body that variable represents. Table 3.1 provides a full explanation of the
what each of the variables mean.

These values were used extensively in the calculations for moment of inertia, lo-
cation of the center of mass, and value of the torques involved in the spin.

Likewise Figure 3.4 illustrates how we defined the angles for our fully developed
model. The angles of different joints with the horizon were the only decision variables
in our optimization problem and how we defined the dancer’s pose. Table 3.3 fully
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Lengths
mLf | Length of forearms of leader
mLb | Length of biceps of leader
mLt | Length of torso of leader
mLq | Length of upper leg (quads) of leader
mLc | Length of lower leg (calf) of leader
fLf | Length of forearms of follower
fLb | Length of biceps of follower
fLt | Length of torso of follower
fLq | Length of upper leg (quads) of follower
fLc | Length of lower leg (calf) of follower

Table 3.1: Table of the notation we used to describe the dancers bodies.

Figure 3.4: Developed model with the angles notated. Each dancer is defined by
seven joint angles.
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Angles

Omys | Angle of Forearms —m/4 | /2
0,5 | Angle of Biceps 0 /2
O, | Angle of Hip /4 3x7/4
Omig | Angle of Knee Grind | 0 Omtq
Omip | Angle of Knee Push | 0 Om fp
Omsg | Angle of Foot Grind | 0 T

Omsp | Angle of Foot Push | 0 T

0r¢ | Angle of Forearms —m/4 | /2
O Angle of Biceps 0 /2
Osn | Angle of Hip w/4 | 3xm/4
Otrg | Angle of Knee Grind | 0 Oftq
Ofrp | Angle of Knee Push | 0 Oftp
Or¢g | Angle of Foot Grind | 0 T

Os¢p | Angle of Foot Push | 0 T

Table 3.2: Angle notation with upper and lower bounds

explains the label for each angle. Also, the table mentions starting values that we
used to begin the optimization process.

The m and f that appear in Figure 3.3 and Figure 3.4 distinguish between the
male and female dancers, which we also used to distinguish between the leader and
the follower. While not all male dancers are leaders and not all female dancers are
followers, we chose to make this distinction for simplicity.

Also, one might notice in Table 3.3 the labeling “push” and “grind”. These words
were used to distinguish between the two legs. When we originally discussed the
problem with two feet and viewed videos of dancers we determined that one of the
feet stayed closer to the axis of rotation and was mainly used for balance and did
not contribute to the spin, but it countered the spin by “grinding” on the floor. The
other leg was further from the axis of rotation and was used to “push” the dancer
around the circle and thus we labeled each foot the push foot and grind foot.

We used trigonometry to calculate the distance from each point on the body to
the axis of rotation based on the pose and the parameters for each couple. The hands
were assumed to be at the axis of rotation, defined as zero. From that point the rest
of the body was defined. A full description of the variables used to represent the
distance to the axis of rotation for each joint in the body follows in the next chapter
and is illustrated in Table 3.3.



15

3.4 Fully Developed Model

The fully developed model should allow for the realistic representation of a couple.
While the motion of this model is confined to the two-dimensional plane, it can be
described in thee-dimensional space as a collection of cylinders. Because we moved
into using cylinders, calculating the moment of inertia for this model was more com-
plicated than the models that represented the dancers as thin rods. More explanation
of the moment of inertia calculations follows in chapter 5.

3.5 Defining Distances

Each distance from the axis of rotation, the z-axis, to the locations of the body’s
joints was labeled R and had a subscript denoting a part of the body. The body
parts were labeled subscript e for elbow, s for shoulder, h for hip, kg and kp for
knee grind and knee push, and finally fg and fp for foot grind and foot push. The
lengths of each piece, L, and angles to the horizon, 6, were similarly labeled with
subscripts. For example, the distance from the elbow to the axis of rotation was
defined as R, = Ly * Cos[fy]. The distance to the shoulder is based on the length
of the upper arm and the distance to the elbow, R; = Ly ¥ Cos[0y] + R.. All other
distances are calculated based on the distances to the body joints calculated before it.
Therefore the distances between each of the feet and the axis of rotation is determined
by the length parameters of the person and the angles of his pose. Table 3.3 shows
our notation for the distances to the axis of rotation.

3.6 Body Radius Definition

When the model was made to be three-dimensional with cylinders instead of two-
dimensional, an additional parameter, the radius of the individual body parts, needed
to be defined. We treated each of the body parts as a cylinder with a constant radius.
The radius of the torso was defined as the distance from the middle of the neck to the
shoulder. Table 3.4 gives variable names used to represent the radius of each body
part.



16

Distance Labels

mRe
mRs
mRh
mRkp
mRkg
mRfp
mRfg
fRe
fRs
fRA

[ REp
[REg
fRfp
fRfg

distance from leader elbow to z-axis
distance from leader shoulder to z-axis
distance from leader hip to z-axis
distance from leader push knee to z-axis
distance from leader grind knee to z-axis
distance from leader push foot to z-axis
distance from leader grind foot to z-axis
distance from follower elbow to z-axis
distance from follower shoulder to z-axis
distance from follower hip to z-axis
distance from follower push knee to z-axis
distance from follower grind knee to z-axis
distance from follower push foot to z-axis
distance from follower grind foot to z-axis

Table 3.3: Notation for the distances to each dancer’s joints from the axis of rotation.

Body Radius Notation

mrt | radius of leader’s torso
mrq | radius of leader’s quad
mrc | radius of leader’s calf

mrb | radius of leader’s bicep
mrf | radius of leader’s forearm
frt | radius of follower’s torso
frq | radius of follower’s quad
frc | radius of follower’s calf
frb | radius of follower’s bicep
frf | radius of follower’s forearm

Table 3.4: Notation for the radius of each body part as represented by a cylinder.
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Body Mass Notation
mmt | mass of leader’s torso
mmgq | mass of leader’s quad
mmec | mass of leader’s calf
mmb | mass of leader’s bicep
mmjf | mass of leader’s forearm
fmt | mass of follower’s torso
fmq | mass of follower’s quad
fme | mass of follower’s calf
fmb | mass of follower’s bicep
fmf | mass of follower’s forearm

Table 3.5: Notation for the estimated mass of each body part based on the dancers
overall mass.

3.7 Mass Notation

To fully define the bodies we also considered the mass of each body part. In order to
estimate this mass we used a system developed by Nickolova to divide the total mass
of the body into fractions of the total mass that existed in each body part [7]. Each
dancer’s total mass was self-reported by the dancers. Table 3.5 provides the notation
used for the mass of each body part.



Chapter 4

Constraining the Model

In addition to defining the size parameters of each dancer and defining his pose, our
model also had to consider the ways a person could actually move. For example, in
an unconstrained model, each joint angle could take any value. If unconstrained, the
joint representing the knee could be bent completely backwards, or the dancer might
be in a limbo position where their back is parallel to the ground and their hips are
thrust inward. Figures 4.1 and 4.2 represent examples of these unnatural poses.

If these pictures represented a machine that was simply looking for the most
efficient spin position and that could balance and bend in any position then the poses
illustrated by 4.1 would be fine. However, since our model is representing a human
pose, the values of the angles in the pose must be constrained so that the dancer’s
position is biologically reasonable.

4.1 Pose Constraints

The first pose constraint we added was a restriction on the hips, so they could not
thrust inward. Even though people can thrust their hips inward, we know from
observing dancers and trying to pose in that way ourselves that it is not a pose from
which one can easily begin to start spinning. The hip constraints are represented by
the following equations added as constraints in the optimization:

Omn + Omig < 7
Omn + Oty <
Opp +0p1g <
Opp +0pp <

18
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Figure 4.1: In this unconstrained model the dancers feet are crossed, their knees are
bending the wrong direction, and they are not rotating around the correct axis.

40r
301

20r

Inches
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Figure 4.2: In this picture one of the dancers is entirely bent over so that his shoulders
are on the floor and he is entirely disconnected from his partner.
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Also, human knees have a limited range of motion. They cannot be bent backwards.
As they are defined in our model, the angle at the feet(6f fg, Om fg) must always be
greater than (6 fkg,0mkg) the angle of the knee. These constraints are represented
by:

Omip — Ompp < 0
Omikg — Ompg < O
Okp = Opsp < 0
Okg —Oppg < 0

The elbow is also limited in its range of motion. Since we are limiting the movement
of the shoulder to the 2-dimensional yz-plane any pose with the elbow bent backward
would require the elbow to be broken. The elbow constraint is represented much like
the knee constraints except for its direction:

emb_emf 2
> 0

Opp —Ors
The final constraint that is strictly a function of pose is a constraint on the value of
the hip angle. Early in our optimization attempts we would occasionally get a value
for the angle of the hip that was negative or near zero. Any angle at or below zero
creates a pose where the dancer is entirely bent forward with her torso nearly level
with the floor. While this pose might create a more minimal moment of inertia, we
know that people cannot dance like this. The hip constraint is simply: 0,,, > 7 and

O/ > 7. These values force the hip angle to maintain a pose that is biologically

sound.

All of the above constraints ensure that the only allowable pose outputs from the
optimization are biologically reasonable poses. We did not want to overly constrain
our solution. The constraints listed above should only require that the dancer be in
a pose that a human being could assume and spin in.

4.2 Tripping Constraint

In addition to the constraints required to make the pose humanly attainable, we also
add restrictions on the ranges of the feet and each of the joints to the axis of rotation.
An optimization scheme could determine the best pose would place a dancer’s feet
on the other side of the axis of rotation crossed over his partner’s feet. See Figure
4 for an illustration of this pose. This pose might create a small moment of inertia,
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however, it is a difficult position from which to begin rotating and not particularly
stable (dancers might trip).

To eliminate this pose and any other poses where the dancers might be so close
that their lower body ends up invading their partner’s body space, we require that
the distances to each dancer’s joints defined in the model are positive:

mRfg >0  fRfg>0
mRfp >0  fRfp>0
mRkg>0  fRkg >0
mRkp>0  fRkp >0
mRh >0  fRh >0
mRs >0  fRs>0
mRE >0  fRE >0

4.2.1 Hand Constraint

The dancers were connected at the hands. Each of the two dancers had unique size
parameters and could assume a different pose. The height of each dancer’s hands
was dependent on his or her pose. Therefore, we wrote a constraint requiring that
the height of the dancers’ hands be equal so that they could hold hands, fHhand —
mHhand = 0.

4.3 Hip Height Constraint

The height of the hip was determined by the pose of the grind leg. However, the
height of the hip is separately determined by the pose of the push leg. These two
values must be equal, fHh — fHhip = 0. The fHh variable represents the location
of the hip as defined by the grind foot and fHhip represents the height of the hip
as defined from the push foot. This constraint prevents the model from creating a
disconnected dancer.

4.4 Grind Foot Location Constraint

As our model is defined, the dancers are pulling on their partner’s hands creating
a tension between them. We did not consider the potential that the dancers would
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pose in such a way that they would be pushing on one another. Thus, in order to
maintain their balance and not push on their partner the dancers grind feet must be
in front of their respective center of mass:

fxCoM — fRfg >0
—mxCoM —mRfg > 0

This constraint will not allow the optimizer to consider any pose that would require
the dancers to be leaning into one another.



Chapter 5

Calculating and Optimizing
Moments of Inertia

5.1 Inertia Calculation Methodology

We calculated the moment of inertia of the dance couple. That dancers minimize
moment of inertia seemed plausible because an object’s moment of inertia is its re-
sistance to initiating a spin. The dancers might be able to spin faster by minimizing
this initial resistance to spin.

We used a planar model to calculate the moment of inertia for a couple. We
determined the mass for all parts of the body by partitioning a dancer’s mass as
described in Table 3.5 and by Niklova [7]. Lengths of different body parts are labeled
with an L and a letter representing the part of the body that it is measuring. The
lengths of each body part were determined for each couple based on video analysis. We
calculated numerically the ideal fixed angles the dancers should choose to minimize
the moment of inertia. These angles were designated in much the same way as the
lengths and were measured as related to the horizontal. For a full listing of the length
and angle parameters refer to tables 3.3 and 3.1.

This model was first applied to one dimensional thin rods and then expanded
to non-right cylinders. We do not elaborate here on the calculations of moment of
inertia for one-dimensional rods. Some optimization results for this model are shown
in section 5.2. The first step in calculating moment of inertia was completed as a part
of the modeling process, which was to define distance to the axis of rotation for each
component of the body. This process was explained in the previous chapter and all
the variable names are listed in Table 3.3. Once these distances are determined we

23
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apply the parallel axis theorem.

5.1.1 Parallel Axis Theorem

We calculated the moment of inertia of each body segment in a given pose by twice
applying the parallel axis theorem. The parallel axis theorem allows us to find the
moment of inertia of a body rotating around an axis by providing a mechanism for
calculating the moment of inertia around the center of mass of that body and then
shifting the object over a specified amount. The parallel axis theorem states:

Inew = lcom + Md2

where I, is the moment of inertia of the body rotating around an axis at some
distance, d, from its center of mass, I.., is the moment of inertia of the object
around its center of mass, and M is the mass of the object.

In our model, the dancer’s body was defined as a collection of possibly non-right
cylinders. To find the moment of inertia of the dancer, we find the moment of inertia
of each part of the body and then sum the individual moments of inertia. To find the
moment of inertia of a single body part modeled as a non-right cylinder we applied
the parallel axis theorem as an integral over the length of the cylinder.

5.1.2 Integrals over non-right cylinders

Integrals were used because integrals can represent a sum of infinitely thin objects
stacked on top of one another. Using the moment of inertia of a thin disk, I =
% * M * R% . and then taking the integral over the length of the non-right cylinder
to sum the moments of inertia of the individual disks, we can calculate the moment
of inertia of the cylinder rotating around its center of mass.

Figure 5.1 shows an example of a non-right cylinder and labels how all of the
variables in the integration would be labeled. The radius of the cylinder is labeled
Teylinder and is also the radius of the thin disk. The distance that each disk would
be offset from the center of mass of the cylinder is labeled r and R is the distance
from the center of mass of the cylinder to the axis the dancer is rotating around. The
calculations for the moment of inertia of a single body part are illustrated below. We
begin by calculating the moment of inertia of a single thin disk:

cylinder

1
Idisk: §*R2 +MT2



25

Figure 5.1: A model of the cylinder that defines the different variables used in the
integration for the moment of inertia.
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Integrating over the length of the cylinder sums the moments of inertia of the indi-
vidual disks and determines the moment of inertia of the whole cylinder. We also use
the parallel axis theorem again by adding an additional Md?* term that will account
for the shift of the cylinder from rotating around its own center of mass to rotating
around a center of mass some distance away. The new inertia would be represented
as:

r1
Isegment = / Idiskd’f’ + MR2

Combining the two equations listed above, we calculate the moment of inertia of the
body segment rotating around the axis of rotation of the dancer’s spin as:

| 1
Isegment = / (5 * nglinder + M,r,2) dr + MR2

As an example of the above calculation we can look at the results for one of the body

parts. The above calculations result in an equation for the moment of inertia of the
torso of:

fInertiaTorso =

%fmt x fre? 4
1
o fLt? * fmt x Cos[0fh)* x Sin * [0fh] +

fmt x (fRs + % * fRh)?

where % fmt * frt? is the inertia for a single thin disk around its center of mass. The
&% fLt? % fmt * Cos[0fh)? = Sin x [0 fh] is the result of the integral that sums all of
the disks over the length of the cylinder. Finally the fmt % (fRs + % x fRh)? term
equates to the M R? term above and shifts the entire moment of inertia from rotating
around its own center to rotating around the axis some distance away. The length,
distance and angle variables are defined in Tables 3.1, 3.3, and 3.3.

5.1.3 Limitations and Putting it all Together

To simplify the calculations, the hands and feet were taken as extensions of the arms
and legs instead of as separate bodies. We neglected the contribution of the hands
and feet to the moment of inertia. The model also does not allow for motion in the
neck and constrains the motion of the hip, legs, and arms to planar motion in the
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xz-plane. We treat all joints as hinge joints with only one degree of freedom. When
the moment of inertia of each piece of the body including the arms, head, torso, and
each leg is calculated, the moments are summed together to obtain the moment of
inertia for the dancer.

5.2 Optimizing the Moment of Inertia

5.2.1 Minimizing the Simple Stick Model

Our original model had only a foot angle, and then we added a hip angle. We rejected
this model because the solutions it gave us were not representative of what we saw
dancers actually doing. When we minimized the moment of inertia with only a foot
angle the answer ended up at our foot crossing constraint. This result held that the
optimal position would be for the dancers to put both feet right at the axis of rotation.
This answer is not physically realistic because from that point they have no ability
to produce force to begin spinning. Also, as illustrated by Figure 5.2, the optimal
solution exists right at the boundary we set. Since the optimal solution lands right
at one of the constraints, we know that the solution is artificially bounded by one of
our constraints. The model that minimizes moment of inertia is not rich enough to
capture some essential aspects of the partnered spin.

5.2.2 Further Minimization with Hip Angle

We added an angle at the hip to add more flexibility to the problem. However,
minimizing the moment of inertia yielded the same pose as we had with the simpler
model. We postulated that any further complexity in the form of joint angles added
to this model would be meaningless because they would continue to come back to
this position. Additionally, in a similar way as to the single angle problem, the
optimal solution butted up against the constraints we set on the problem. Figure
5.3 illustrates the unconstrained pose and the optimal solution corresponds with the
red star on Figure 5.6. We added the hip constraint from Section 4.1. With this
constraint we got the pose represented in Figure 5.4 whose corresponding optimal
solution is represented by the yellow star on Figure 5.6. For Figure 5.5 we added
the foot crossing constraint (Section 4.2) in addition to the hip constraint. This
pose illustrated in Figure 5.5 corresponds to the green star on Figure 5.6. This work
convinced us that minimizing moment of inertia would not produce an output that
would convincingly represent the pose for a partnered spin. When we moved on to
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Figure 5.2: The graph that was produced for the optimization of the dancer with
only one angle.
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Figure 5.3: The unconstrained optimal pose.

our more advanced model based on maximizing the angular acceleration all of our
moment of inertia work was put into use as a piece of that model.

Minimizing the moment of inertia is not a rich enough problem. The answer
aligned to the constraints we set on what the person could physically do. To minimize
their moment of inertia, the dancers should stand up straight and get very close
together. This position does not allow for the dancers to produce any torque to spin.
They need one of their feet to have some distance from the axis in order to have
a moment arm to apply a rotational force and create torque. We know dancers do
not dance with both feet right at the axis and thus we determined that minimizing
moment of inertia was not sufficient for understanding why dancers adopt the poses
they do.
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Figure 5.4: The optimal pose with the hip constraint.
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Figure 5.5: The fully constrained optimal pose.
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Figure 5.6: This graph illustrates the value of the moment of inertia for each of
the previous three poses. The red star corresponds with the unconstrained solution
(Figure 5.3) and has the lowest moment of inertia. The yellow star corresponds with
the solution with the hip constraint (Figure 5.4) and has a slightly higher moment of
inertia. The green star corresponds with the fully constrained solution (Figure 5.5)
and has the highest moment of inertia.



Chapter 6

Calculating and Maximizing
Angular Acceleration

6.1 Angular Acceleration Models

In modeling the spinning motion of dancers, we use their size parameters to determine
the best pose for a couple by maximizing their angular acceleration. This model
appears to output realistic poses for the Lindy Hop rhythm circle. The ideal pose
is deemed to be a pose that maximizes the angular acceleration of the dancers. The
angular acceleration, a[0], is calculated as:

7[6]
o = M
© = [051,070,0n, kg, Osrps Or g5 O s Omgs O, O, Omgs Omps Ompgs Omf)

where tau,7[0)], is the torque produced by the dancer as a function of © and the
moment of inertia, /[©], is the dancers’ resistance to initiating a spin. Theta, O,
is a vector of angles that define both dancers’ poses. All angles are calculated with
relation to the horizon as illustrated in Figure 3.4.

We should clarify that 7[0] is not taken from experimental data, but is calculated
instead. Calculating the correct Tau, 7[0], was one of the most challenging parts of
building the model. The first step in determining «[O)] is to determine the moment
of inertia.

33
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6.2 Accounting for Forces

Our first objective function neglected the need to produce torque in order to spin, so
we decided to maximize angular acceleration instead. Angular acceleration, «[0], is
(6]

equal to Tle]- This objective incorporates the dancers’ ability to create torque from

a given pose while minimizing the moment of inertia.

Torque, 7, is the force which causes an object to spin and produces angular accel-
eration. Tau can not be arbitrarily large because the force is generated by the dancer
pushing against the floor, and there is a limit beyond which the dancer’s foot will slip.
All of the external forces acting on the dancers are related to one another. Figure
6.1 illustrates all of these forces acting on the dancers. There are in fact only four
independent forces at work as the dancer spins: the force of gravity acting through
the center of mass, the force acting at her hands from her partner pulling on her, and
the force from the floor acting on each of her two feet. The feet are distinguished as
the push foot and the grind foot

In Figure 6.1 each of these forces is broken down into components in the x,y, and
z axes. In order to sufficiently constrain our problem we had to set the force acting
at the hands in the y and z axes to be zero. Thus the force at the hands is only
represented by a single arrow in this picture. Additionally because gravity only acts
in the z direction it was also only represented with a single arrow. The forces on each
of the feet were separated into their x,y,z components.

The known force of gravity acts through the center of mass of the dancer in the
z-direction and is equal to 9.8 * fMass. fFxHands is the force in the x-direction
on the follower from her partner pulling on her hands while mFxHands is the equiv-
alent force on the leader from the follower pulling on his hands. While fFyHands,
fFzHands, mFyHands, and mFyHands do exist, they are not illustrated because
for the purposes of our model we set them equal to zero. fFgrindVert is the force in
the x-direction on the follower’s grind foot that is a result of friction and represents
her tendency to slide toward or away from her partner. m#F'grindVert represents
the equivalent force to fFgrindVert for the leader. fFpushVert is the force in the
x-direction on the follower’s push foot. mFpushVert represents the force in the x-
direction acting on the leader’s push foot. fFgrindHort and fFpushHort are the
forces acting on each of the follower’s feet in the z-direction. These forces are often
referred to as normal forces. mF grindHort and mFpushHort are the normal forces
on the leader’s feet.

Finally fFpushSpin is the force on the follower’s push foot in the y-direction that
will induce motion that will initiate the spin. These forces are the most crucial forces
in our model because they are the forces that induce the spin. Our goal was to find
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xCoM calculations and zCoM calculations

frCoM f = fRe/2 % fmf fzCoMf=(fHE + fHh)/2* fmf
frCoMb = (fRs+ fRe)/2x fmb fzCoMb= (fHs+ fHE)/2* fmb
fxCoMt = (fRs+ fRh)/2 x fmt fzCoMt = (fHs+ fHh)/2* fmt

frCoMqg = (fRkg + fRh)/2 % fmqg fzCoMqg = (fHh + fHkg)/2 * fmqg
fxCoMaqp = (fRkp + fRh)/2 % fmqp fzCoMaqp = (fHh+ fHkp)/2 % fmqp
frCoMcg = (fRkg+ fRfg)/2 x fmcg fzCoMcg = fHkg/2 % fmcg
fxCoMecep = (fRkp + fRfp)/2 % fmep fzCoMep = fHEp/2 x fmcp

maxCoM f = mRe/2 « mmf mzCoM f = (mHE +mHh)/2 « mmf
maxCoMb = (mRs + mRe)/2 % mmb mzCoMb= (mHs+mHE)/2xmmb
mxCoMt = (mRs +mRh)/2 x mmt mzCoMt = (mHs +mHh)/2 « mmt

maxCoMqg = (mRkg + mRh) /2« mmqg | mzCoMqg = (mHh + mHkg)/2 « mmqg
maxCoMqgp = (mRkp + mRh)/2xmmgp | mzCoMqp = (mHh + mHkp)/2 *« mmgp
maxCoMcg = (mRkg +mRfg)/2«mmcg | mzCoMcg = mHkg/2 x mmcg
maxCoMep = (mRkp+ mRfp)/2 x mmep | mzCoMcep = mHkp/2 x mmep

Table 6.1: Calculations for the x-coordinate of the center of mass, xCoM, and z-
coordinate for the center of mass, zC'oM, for the follower and leader.

a method for estimating these forces. This force is countered by fFgrindspin which
is the force in the y-direction at the grind foot. mFpushSpin and mFgrindSpin are
the leader equivalents for these two forces.

While there are only 8 external forces controlling this system, calculating these
forces is a challenging problem. One of the first steps in solving it is to determine the
location of the center of mass for a dancer in a given pose [13].

6.2.1 Finding the Center of Mass

Gravity acts through an object’s center of mass. We used our segmented body model
to calculate the center of mass, and we calculated the x, y, and z components of the
center of mass separately. The center of mass of each body segment is the average of
the two end points of a body part.

For example, the x-coordinate of the center of the torso is xCoMt = (Rs+ Rh)/2.
A weighted average of these values determined x-coordinates of the center of mass of
the body. Similar calculations yield the location of the z-coordinate of the center of
mass. Because our model did not allow for any movement in the y-axis, we set the
y-coordinate of the center of mass to zero.
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To determine the weight of each body part we used work by Nikolova and Toshev
on the population of Bulgaria [7]. They developed a standard for the percentage of
a person’s weight that is in each of his or her body parts. While this method will
not provide a precise distribution for each individual, it allows us to easily estimate

the distribution for all of the subjects. The calculations for the center of mass are in
Table 6.1.

6.3 Dynamic Model
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